Acta Cryst. (1995). C51, 893-894

5-Dodecyl-2-(1-hydroxyethyl)benzimidazolium Chloride

ANDRÉ AUBRY

Laboratoire de Minéralogie, Cristallographie et Physique Infrarouge, URA-CNRS 809, Université de Nancy I, BP 239, 54506 Vandoeuvre-lès-Nancy CEDEX, France

ALAIN BREMBILLA, VALÉRIE FAIVRE AND PIERRE LOCHON

Laboratoire de Chimie-Physique Macromoléculaire, URA-CNRS 494, 1 Grandville BP 451, 54001 Nancy CEDEX, France

(Received 13 April 1994; accepted 3 October 1994)

Abstract

The title compound, 5-dodecyl-2-(1-hydroxyethyl)benzimidazolium chloride, C₂₁H₃₅N₂O⁺.Cl⁻, serves as a lipophilic model for hydrolytic metalloenzymes. The crystal structure determination shows that molecules are hydrogen bonded through the Cl atom and that the dodecyl chains have fully extended conformations.

Comment

Micellar catalysis has been studied extensively over the past two decades as the model of enzyme catalysis. Comicelles of cationic surfactants and long-chain alkylbenzimidazole ligands having a primary or a secondary hydroxyl group in their side chain have been examined for their esterolytic activity towards activated esters in the presence of a metal cation (e.g. Zn^{2+}) (Faivre, Brembilla, Roizard & Lochon, 1991). Indeed, the Zn²⁺ ion activates the benzimidazole ligand to form a complex, the geometry of which is an essential factor for the generation of full catalytic activities. Therefore, the establishment of a structure-activity relationship requires the determination of the X-ray crystal structure of this ligand. Experimental intramolecular distances of the heterocyclic ring of the title compound, (I), are in good agreement with those determined for benzimidazole (Escande & Galigné, 1974) and 2-hydroxymethylbenzimidazole (Aubry, Brembilla, Faivre & Lochon, 1995).

Examination of the intermolecular interatomic distances shows that each molecule is bonded to two identical neighbouring molecules by means of weak hydrogen bonds through the Cl atom: N(1)— $H \cdot \cdot \cdot Cl^{i} =$ 3.052 (3), N(2)—H···Cl = 3.082 (3) and O(1)—H···Clⁱⁱ = 3.062 (4) Å [symmetry codes: (i) x-1, y, z; (ii) $x-\frac{1}{2}$, $\frac{1}{2}$ + y, z]. Moreover, these four atoms are almost coplanar: $O(1) \cdots Cl \cdots N(2) = 109.39(9), N(1) \cdots Cl \cdots N(2)$ = 156.56(8) and $O(1) \cdot \cdot \cdot Cl \cdot \cdot \cdot N(1) = 79.20(9)^{\circ}$. The aliphatic chains of the molecules are fully extended with torsion angles equal to 180°.

Fig. 1. ORTEP (Johnson, 1965) drawing of the title molecule with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Experimental

Crystal data	
$C_{21}H_{35}N_2O^+.Cl^-$	Cu $K\alpha$ radiation
$M_r = 366.97$	$\lambda = 1.5418 \text{ Å}$
Monoclinic	Cell parameters from 25
Сс	reflections
a = 8.174(1) Å	$\theta = 20 - 30^{\circ}$
b = 7.228(1) Å	$\mu = 1.563 \text{ mm}^{-1}$
c = 36.114(3) Å	T = 293 K
$\beta = 86.96(1)^{\circ}$	Parallelepiped
$V = 2131 \text{ Å}^3$	$0.3 \times 0.2 \times 0.2$ mm
Z = 4	Colourless
$D_x = 1.144 \text{ Mg m}^{-3}$	Crystal source: from ethanol/nitromethane

Data collection Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: none 3925 measured reflections 2042 independent reflections 1981 observed reflections $[I > \sigma(I)]$

Refinement

Refinement on F R = 0.0463wR = 0.0541S = 1.7251981 reflections 228 parameters Only coordinates of H atoms refined

 $w = 1.645 / [\sigma^2(F)]$ $+ 0.0014F^{2}$] $(\Delta/\sigma)_{\rm max} = 0.05$ $\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}$ $\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$ Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

(20/80 v/v)

 $R_{\rm int} = 0.0256$

 $h = -13 \rightarrow 13$

2 standard reflections

frequency: 120 min

intensity decay: none

 $\theta_{\rm max} = 70^{\circ}$

 $k = 0 \rightarrow 9$

 $l = 0 \rightarrow 16$

Table	1. Fractional	atomic	coordinates	and equivaler	nt
	isotropic di	splacem	ent paramete	$rs(Å^2)$	

$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	B_{eq}
C1	0.3794	0.291	0.3211	6.09 (3)
O(1)	-0.0046 (4)	0.4789 (5)	0.2688(1)	5.75 (7)
C(2)	-0.1342 (4)	0.3599 (5)	0.2777 (1)	4.11 (7)
C(1)	-0.1220 (7)	0.1946 (7)	0.2524 (1)	5.7 (1)
C(3)	-0.1297 (4)	0.2992 (4)	0.3177 (1)	3.35 (6)
N(1)	-0.2615 (4)	0.2610 (4)	0.33960 (8)	3.44 (5)
C(4)	-0.2095 (4)	0.1951 (4)	0.37343 (9)	3.15 (6)
C(5)	-0.0389 (4)	0.1995 (4)	0.37054 (9)	3.28 (6)
N(2)	0.0050 (4)	0.2663 (4)	0.33539 (8)	3.48 (5)
C(6)	0.0511 (4)	0.1377 (5)	0.3995 (1)	3.77 (6)
C(7)	-0.0358 (4)	0.0697 (5)	0.43021 (9)	3.75 (6)
C(8)	-0.2093 (4)	0.0651 (4)	0.43320 (9)	3.34 (6)
C(9)	-0.2970 (4)	0.1300 (4)	0.40424 (9)	3.27 (6)
C(10)	-0.2929 (4)	-0.0182 (5)	0.4679(1)	4.02 (7)
C(11)	-0.4716 (4)	0.0220 (5)	0.4752(1)	3.90 (7)
C(12)	-0.5418 (4)	-0.0697 (5)	0.5105(1)	3.94 (7)
C(13)	-0.7222 (5)	-0.0309 (6)	0.5191 (1)	4.19 (7)
C(14)	-0.7927 (4)	-0.1267 (6)	0.5538(1)	4.01 (7)
C(15)	-0.9724 (4)	-0.0827 (5)	0.5629(1)	4.21 (7)
C(16)	-1.0433 (5)	-0.1813 (6)	0.5971 (1)	4.11 (7)
C(17)	-1.2224 (5)	-0.1370 (6)	0.6067(1)	4.34 (7)
C(18)	-1.2919 (5)	-0.2365 (6)	0.6410(1)	4.36 (7)
C(19)	-1.4695 (5)	-0.1901 (6)	0.6513(1)	4.64 (8)
C(20)	-1.5382 (6)	-0.2896 (7)	0.6855(1)	5.3 (1)
C(21)	-1.7161 (7)	-0.2448 (8)	0.6955 (2)	6.3 (1)

Table 2. Selected geometric parameters (Å, °)

O(1)—C(2)	1.389 (5)	C(8)—C(10)	1.518 (5)
C(2)—C(1)	1.506 (6)	C(10) - C(11)	1,499 (5)
C(2)—C(3)	1.511 (5)	C(11) - C(12)	1.523 (5)
C(3)—N(1)	1.331 (4)	C(12) - C(13)	1.517 (5)
C(3)—N(2)	1.324 (5)	C(13) - C(14)	1.518 (5)
N(1)—C(4)	1.398 (4)	C(14) - C(15)	1.522 (5)
C(4)—C(5)	1.394 (4)	C(15)—C(16)	1,516 (5)
C(4)—C(9)	1.374 (4)	C(16)-C(17)	1.520 (5)
C(5)—N(2)	1.387 (4)	C(17)-C(18)	1.516(6)
C(5)—C(6)	1.383 (5)	C(18) - C(19)	1.517 (6)
C(6)—C(7)	1.377 (5)	C(19)-C(20)	1.511 (6)
C(7)—C(8)	1.417 (5)	C(20)—C(21)	1.515 (7)
C(8)—C(9)	1.381 (5)		
O(1)-C(2)-C(1)	109.0 (3)	C(7)—C(8)—C(9)	119.5 (3)
O(1)-C(2)-C(3)	110.1 (3)	C(7)-C(8)-C(10)	118.5 (3)
C(1)—C(2)—C(3)	110.3 (3)	C(9) - C(8) - C(10)	122.0 (3)
C(2) - C(3) - N(1)	124.6 (3)	C(4)-C(9)-C(8)	117.4 (3)
C(2)—C(3)—N(2)	125.2 (3)	C(8)-C(10)-C(11)	117.4 (3)
N(1) - C(3) - N(2)	110.1 (3)	C(10)—C(11)—C(12)	112.6 (3)
C(3)—N(1)—C(4)	108.4 (3)	C(11)—C(12)—C(13)	114.2 (3)
N(1)-C(4)-C(5)	106.0 (3)	C(12)—C(13)—C(14)	113.9 (3)
N(1)-C(4)-C(9)	130.9 (3)	C(13)—C(14)—C(15)	113.7 (3)
C(5)—C(4)—C(9)	123.0 (3)	C(14)—C(15)—C(16)	113.6 (3)
C(4)—C(5)—N(2)	106.6 (3)	C(15)—C(16)—C(17)	114.1 (3)
C(4)—C(5)—C(6)	120.4 (3)	C(16)—C(17)—C(18)	113.6 (3)
N(2)—C(5)—C(6)	132.9 (3)	C(17)—C(18)—C(19)	114.1 (3)
C(3) - N(2) - C(5)	108.8 (3)	C(18)-C(19)-C(20)	113.9 (4)
C(5)—C(6)—C(7)	116.9 (3)	C(19)-C(20)-C(21)	113.9 (4)
C(6)—C(7)—C(8)	122.8 (3)		

Program used to solve structure: *MULTAN80* (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980). Molecular graphics: *ORTEP* (Johnson, 1965). Full-matrix least-squares refinement: *SHELXS86* (Sheldrick, 1990). Following recommendations by Taylor & Kennard (1983), the H atoms of the N—H groups were placed at 1.03 Å from their N atoms in the direction obtained by refinement.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: PA1122). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Aubry, A., Brembilla, A., Faivre, V. & Lochon, P. (1995). Acta Cryst. C51, 115-116.
- Escande, A. & Galigné, J. L. (1974). Acta Cryst. B30, 1647-1648.
- Faivre, V., Brembilla, A., Roizard, D. & Lochon, P. (1991). Tetrahedron Lett. 32, 193–196.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J. P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Taylor, R. & Kennard, O. (1983). Acta Cryst. B39, 133-138.

Acta Cryst. (1995). C51, 894-904

Octaanisyl Cavitands and a Related Caviplex

KENNETH N. TRUEBLOOD, EMILY F. MAVERICK AND CAROLYN B. KNOBLER

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90024-1569, USA

ISRAEL GOLDBERG

School of Chemistry, Tel-Aviv University, Ramat-Aviv 69978, Israel

(Received 31 May 1994; accepted 23 November 1994)

Abstract

The macrocyclic host 41,42,43,44,45,46,47,48-octamethoxy-4,9,14,19,24,29,34,39-octamethylnonacyclo-[35,3,1,1^{2,6},1^{7,11},1^{12,16},1^{17,21},1^{22,26},1^{27,31},1^{32,36}]octatetraconta-1(41),2,4,6(42),7,9,11(43),12,14,16(44),17,-19,21(45),22,24,26(46),27,29,31(47),32,34,36(48),37,-39-tetracosaene [(I), C₆₄H₆₄O₈] contains a cavity lined with eight O atoms. This 'cavitand' complexes a caesium ion more strongly than any other alkali-metal ion, as expected from molecular models. The structure of a CH₂Cl₂ solvate of (I) [which we term (Ia)] was determined at 113 K. The conformation of the macrocycle appears to be stabilized by the intrusion of a 4-methyl group from a neighboring molecule. This conclusion was reinforced by the determination, at 115 K, of the structure of the ethanol solvate (Ib)